行业新闻

光纤通信的发展趋势

目前,在实际运用中相当有前途的一种通 信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且 复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。
自 上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒 介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备 受通信领域专业人士青睐,发展也异常迅猛。

光纤通信自从问世以来,给整个通信领域带来了一场革命,它使高速率、大容量的通信成为可能。光 纤通信由于具有损耗低、传输频带宽容量大、体积小、重量轻、抗电磁干扰、不易串音等优点而备受业内人士的青睐,发展非常迅速。光纤通信系统的传输容量从 1980年到2000年这20年间增加了近一万倍,传输速度在过去的10年中大约提高了100倍。目前,我国长途传输网的光纤化比例已超过80%,预计到 2010午,全国光缆建设长度将再增加约105km,并且将有11个大城市铺设10G以上的大容量光纤通信网络。

1Z0496429-0.jpg

一、光纤通信技术的现状

光纤通信的发展依赖于光纤通信技术的进步。目前,光纤通信技术已有了长足的发展,新技术也不断涌现,进而大幅度提高了通信能力,并不断扩大了光纤通信的应用范围。

1.波分复用技术

波分复用WDM(Wavelength Division Multiplexing)技术可以充分利用单模光纤低损耗区带来的巨大带宽资源。根据每一信道光波的频率(或波长)不同,将光纤的低损耗窗口划分成若干 个信道,把光波作为信号的载波,在发送端采用波分复用器(合波器),将不同规定波长的信号光载波合并起来送入一根光纤进行传输。在接收端,再由一波分复用 器(分波器)将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看作互相独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光 信号的复用传输。自从上个世纪末,波分复用技术出现以来,由于它能极大地提高光纤传输系统的传输容量,迅速得到了广泛的应用。

1995年以来,为了解决超大容量、超高速率和超长中继距离传输问题,密集波分复用 DWDM(Dens Wavelength Division Multiplexing)技术成为国际上的主要研究对象。DWDM光纤通信系统极大地增加了每对光纤的传输容量,经济有效地解决了通信网的瓶颈问题。据 统计,截止到2002年,商用的DWDM系统传输容量已达400Gbit/s。以10Gbit/s为基础的DWDM系统已逐渐成为核心网的主流。DWDM 系统除了波长数和传输容量不断增加外,光传输距离也从600km左右大幅度扩展到2000km以上[2]。

与此同时,随着波分复用技术从长途网向城域网扩展,粗波分复用CWDM(Coarse Wavelength Division Multiplexing)技术应运而生。CWDM的信道间隔一般为20nm,通过降低对波长的窗口要求而实现全波长范围内 (1260nm~1620nm)的波分复用,并大大降低光器件的成本,可实现在0km~80km内较高的性能价格比,因而受到运营商的欢迎。

2.光纤接入技术

光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化,满足大众的需求,不仅要有 宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达位置的不同,有FTTB、 FTTC、FTTCab和FTTH等不同的应用,统称FTTx。

FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的 宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从2003年起,在“863”项目的推动下,开始了FTTH的应用和推广工 作。迄今已经在30多个城市建立了试验网和试商用网,包括居民用户、企业用户、网吧等多种应用类型,也包括运营商主导、驻地网运营商主导、企业主导、房地 产开发商主导和政府主导等多种模式,发展势头良好。不少城市制订了FTTH的技术标准和建设标准,有的城市还制订了相应的优惠政策,这些都为FTTH在我 国的发展创造了良好的条件。

在FTTH应用中,主要采用两种技术,即点到点的P2P技术和点到多点的xPON技术,亦可称 为光纤有源接入技术和光纤无源接入技术。P2P技术主要采用通常所说的MC(媒介转换器)实现用户和局端的直接连接,它可以为用户提供高带宽的接入。目 前,国内的技术可以为用户提供FE或GE的带宽,对大中型企业用户来说,是比较理想的接入方式。

xPON意味着包括多种PON的技术,例如APON(也称为BPON)、EPON(具有GE能 力的称为GEPON)以及GPON。APON出现最早,我国的“863”项目也成功研发出了APON,但由于诸多原因,APON在我国基本上没有应用。目 前用得比较多的是EPON中的GEPON,我国的GEPON依然属于“863”计划的成果,而且得到广泛的应用,还出口到日本、独联体、欧洲、东南亚等海 外一些国家和地区。GPON由于芯片开发出来比较晚,相对不是很成熟。成本还偏高,所以,起步较晚,但在我国已经开始有所应用。由于其效率高、提供TDM 业务比较方便,有较好的QoS保证,所以,很有发展前景。EPON和GPON各有优缺点,EPON更适合于居民用户的需求,而GPON更适合于企业用户的 接入[3]。

二、光纤通信技术的发展趋势

对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。

1.超大容量、超长距离传输技术

波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有很大的应用前景, 这几年波分复用系统发展也确实十分迅猛。目前,1.6Tbit/s的WDM系统已经大量商用,同时,全光传输距离也在大幅度扩展。提高传输容量的另一种途 径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率提高传输容量,其 实现的单信道最高速率达640Gbit/s。

仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用, 从而大大提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理 分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此,现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传 输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。欧共体的RACE计划和美国正在执行的 ARPA计划在发展宽带全光网中都部署了WDM和OTDM混合传输方式,以提高通信网络的带宽和容量。WDM/OTDM系统已成为未来高速、大容量光纤通 信系统的一种发展趋势,两者的适当结合应该是实现Tbit/s以上传输的最佳方式。实际上,最近大多数超过3Tbit/s的实验都采用了时分复用 (TDM、OTDM、ETDM)和WDM相结合的传输方式[4]。

2.光弧子通信

光弧子是一种特殊的ps数量级上的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而,经过光纤长距离传输后,波形和速度都保持不变。光弧子通信就是利用光弧子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。

在光弧子通信领域内,由于其具有高容量、长距离、误码率低、抗噪声能力强等优点,光弧子通信备 受国内外的关注,并大力开展研究工作。美国和日本处于世界领先水平。美国贝尔实验室已经成功实现了将激光脉冲信号传输5 920km,还利用光纤环实现了5Gbit/s、传输15 000km的单信道孤子通信系统和10Gbit/s、传输11 000km的双信道波分复用孤子通信系统;日本利用普通光缆线路成功地进行了超高20Tbit/s、远距离1 000km的孤立波通信,日本电报电话公司推出了速率为10 Gbit/s、传输12 000km的直通光弧子通信实验系统。在我国,光弧子通信技术的研究也有一定的成果,国家“863”研究项目成功地进行了OTDM光弧子通信关键技术的研 究,实现了20Gbit/s、105km的传输。近年来,时域上的亮孤子、正色散区的暗孤子、空域上展开的三维光弧子等,由于它们完全由非线性效应决定, 不需要任何静态介质波导而备受国内外研究人员的重视[5]。

光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技 术以及超短脉冲的产生和应用技术使?a href="http://www.cnii.com.cn/cnii_zte/index.htm" class="yt" >中兴俾?0~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提 高到100000公里以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然,实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使 我们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。

3.全光网络

未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此,真正的全光网成为一个非常重要的课题。

全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。

全光网络具有良好的透明性、开放性、兼容性、可靠性、可扩展性,并能提供巨大的带宽、超大容 量、极高的处理速度、较低的误码率,网络结构简单,组网非常灵活,可以随时增加新节点而不必安装信号的交换和处理设备。当然,全光网络的发展并不可能独立 于众多通信技术之中,它必须要与因特网、ATM网、移动通信网等相融合[6]。

目前全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个 真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技 术发展的最高级别,更是理想级别。

三、结束语

目前,光纤通信已成为一种最主要的信息传输技术,迄今尚未发现可以取代它的更好的技术。即使是 在全球通信行业处于低迷时期,光纤通信的发展也从未停滞过,就我国而言,2002年的光通信市场相比2001年仍处增长状态。从现代通信的发展趋势来看, 光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来如愿到来。

光纤通信技术现已作为一种重要的现代信息传输技术之一,在现在的信息社会背景下得到了普遍意义 上的应用,在全球通信领域及相关行业在全球处于非常低迷的状态时,光纤通信技术仍得到了一些发展。依照我国现行的通信技术领域的发展模式,光纤通信技术的 应用必会代替一切其他的信息传送方式,而成为未来通信领域发展的主流技术,带领人类进入全光时代!


Contact Us

Contact: 陈尚华

Phone: 18062545332

Tel: 15802770555

Email: 976651@qq.com

Add: 武汉市洪山区卓刀泉271号五环广场第二幢一单元13层

用手机扫描二维码关闭
二维码